WIND ENERGY ECONOMICS

Stephen B. Harsh
Department of Agricultural Economics
Michigan State University

INTRODUCTION

- To acquaint you with the proven economic tools and methods for evaluating capital investments
 - Cash-flow analysis and discounted returns
 - Accounting for tax effects
- Review key factors that should be considered in exploring wind economics
- Use case examples to illustrate the possible economic returns by investing in these energy enterprises

NECESSARY FACTORS FOR TURBINE DEVELOPMENT

- A good source of wind
 - Wind is solar energy
 - The potential power of wind is influenced by:
 - The speed (velocity) of the wind
 - -- As the speed increase by 25%, the power increases by 100%
 - -- 15 mph to 18 mph results in a 73% increase in power
 - Influenced by height above the ground and obstructions
 - The density (specific gravity) of the air
 - -- The air is more dense in the winter months
 - -- Higher humidity air is more dense

Michigan
Wind Speed
at 30 Meters
(100 feet)

ANEMOMETERS ARE USED TO MEASURE WIND

(Anemometers Continued)

- Anemometer Loan Program for small wind projects
 - Supported by 3 separate grants
 - An application process was used
 - Had over 40 applications
 - Those selected
 - Proposed good use of wind power
 - Appeared to have a good location
 - Reflected some diversity in location and type of agricultural operation
 - Beef, Pork, Dairy, Greenhouse, Fruit operations and research and educational centers
- For utility scale projects a higher anemometer system is needed

- Power purchase agreement
 - One of the most critical issues
 - It will be the difference between a good investment and a possible bankrupt one
 - The are lots of ways the rate can be set
 - Use the power generated in own business
 - Net metering
 - Negotiate with a power company
 - -- Strongly suggest the use of an experienced utilities lawyer
 - Some utility companies have a need or desire to purchase "Green Energy" (RPS = Renewables Portfolio Standard)
 - ► Take the mandated "avoided cost rate," currently at 1.8 cents/kwh

- Access to the grid
 - **❖For smaller systems net metering** provisions are supposed to make this easier by it limited to 30kW for Michigan
 - For larger systems, it can be a much more involver process
 - MISO (Midwest Independent Transmission System Operator) controls this access in the Midwest
 - -- Must submit a service request
 - -- Can be a long and expensive process

- Have a sound financial plan
 - Have adequate financing available (short-term and long-term)
 - Need to take advantage of special options
 - Government cost sharing
 - '02 Farm Bill, Title 6401(Section 9006) allows for 25%, max of \$500,000
 - Tax effects
 - Fast depreciation
 - Tax credits

Local approval

- There can be significant local resistance
 - Zoning that address set-backs, noise, removal provisions, etc.
 - NIMBY forces
 - Turbine envy
 - Opposed because of the impact on the view, noise, bird kill, ice shed, safety issues, etc.

KEY INFORMATION NEEDED WHEN EVALUATING INVESTMENTS

- Cash flows over time
 - Partial budgeting method
 - -- What are the revenues and expenses that change as a result of this investment each year of the life of the investment
 - Need to take into consideration several aspects including
 - Tax impacts
 - Risk
 - Non-time neutral rate changes in cash-flows (inflation)
- A rate of return desired on the investment.

RATE OF RETURN CONSIDERATIONS

Payback period

- How long does it take to get your investment back
- Poor way of evaluating investments

Some stated goal

At least 15% on invested capital

Cost of borrowed capital

- This short-changes the investor
- Which loan should be used

Opportunity cost

- What can it earn in the next best alternative
 - Farm Land in Michigan = 10.3%
 - Stock Market = 12.7%

DISCOUNTING PRINCIPLE

$$V = \begin{bmatrix} N \\ R_n \end{bmatrix} \frac{R_n}{(1+1)^n}$$

Where:

V = Net Present Value

R_n = Net return in time period n

I = Interest rate (decimal form)

N = Number of time periods for life of investment

$$V = \frac{R_1}{(1+1)^1} + \frac{R_2}{(1+1)^2} + \frac{R_3}{(1+1)^3} + \cdots + \frac{R_n}{(1+1)^n}$$

(Discounting Principle Continued)

EXAMPLE: Two \$100,000 investments with different cash flows over time

Discount Rate (Desired Return) = 10%

	 	_ 4_		1	: A
-		C T I	me	ПОТ	· 🔼
-	V C.	3 LI			. /

Investment B

<u>Year</u>	Net Return	Year	Net Return
0	-100,000	0	-100,000
1	5,000	1	25,000
2	10,000	2	30,000
3	15,000	3	25,000
4	20,000	4	20,000
5	25,000	5	15,000
6	30,000	6	10,000
7	25,000	7	5,000
8	10,000	8	5,000
Salvage	<u> 15,000</u>	Salvage	10,000
TÖTAL	55,000	TÖTAL	45,000

(Discount Principle Continued)

	Discount
Year	Factor
0	1.0000
1	0.9091
2	0.8264
3 (0.7513
4	0.6830
5	0.6209
6	0.5645
7	0.5132
8	0.4665

Investment A		
Cash Flows	Disc. Flows	
-100000	-100000	
5000	4545	
10000	8264	
15000	11270	
20000	13660	
25000	15523	
30000	16934	
25000	12829	
25000	11663	
55000	-5311	

Investment B		
Cash Flows	Disc. Flows	
-100000	-100000	
25000	22727	
30000	24793	
25000	18783	
20000	13660	
15000	9314	
10000	5645	
5000	2566	
15000	6998	
45000	4486	

Internal Rate of Return

8.8%

11.5%

TAX IMPACTS ARE IMPORTANT

- Depreciation allowance
 - This is a non-cash expense
 - It only has value in that it reduces the amount of taxes paid
 - Fast depreciation methods are generally preferred
- Some expenses are tax deducible and others are not
 - Example of tax deducible expenses: Interest on loans, hired labor, repairs, property taxes (reduce taxes paid)
 - Examples of non-tax deducible expenses: Principal on loans (paid with after-tax funds)

(Tax Impacts Continued)

- Tax credits and grants
 - Credits are after-tax funds (have value if taxes are to be paid and are more valuable than a tax-deducible expense)
 - Grants are good because they generally come early but they are taxable income

UTILITY SCALE SYSTEMS

EXAMPLE OF UTILITY SCALE PROJECT

- This is community wind project with eight 1.5 mW turbines in the project
- Key assumptions for a turbine (Case 1):
 - Total cost per turbine is 2.2 million dollars
 - Assumed life of investment = 20 years
 - Power purchase agreement = 6.0 cents per kWh
 - Federal tax credit of 1.9 cents per kWh for 10 years
 - Average power capacity factor for each turbines = 30%
 - Financing 60% of the cost (15 year loan @6.5%)
 - Major rebuild of gear box every 5 years
 - Annual costs include repairs, utilities, property taxes, insurance and service contract
 - Before tax desired return on investment = 12%
 - Aggregate marginal tax bracket = 41%
 - Prior taxable income of 640,000 & \$182,000 taxes paid

(Utility Scale Project Continued)

- Analyzed with the "Alpha-3" version of Utility Wind Investment Model (used capital budgeting methods)
 - Uses after-tax discounted flows
- Results (Case 1):
 - Years with negative after-tax cash flows = 3
 - After-tax discounted income = \$169,000
 - Before-tax internal rate of return = 16.6%
- Sensitive analysis Examining alternative scenarios
 - Changing assumptions to determine how they affect the outcome
 - Powerful planning tool
 - Identified what is really important when considering an investment decision

(Utility Scale Project Continued)

- Family owned turbine (Case 2)
 - Assumptions:
 - Same as Case 1 except
 - No lease payments
 - Much lower taxable income and taxes paid
 - Results (Case 2)
 - -- Discounted income = \$-55,000
 - -- Before tax return on investment = 10.8%
 - -- Years with negative after-tax cash flows = 4

(Utility Scale Project Continued)

- Minnesota Flip Ownership
 - First 10 years owned by a high tax corporation
 - Second 10 years owned by farm family
 - -- Purchase price =\$1,000,000
 - Assumptions (same as Case 1 except):
 - -- Family ownership uses assumptions of Case 2
 - -- Family obtains only 1% of sales in first 10 years

Results:	1st	2 nd
Discounted Income	\$130,000	\$45,000
After tax return on invest	15.3%	17.1%

SMALL WIND SYSTEMS FOR INTERNAL CONSUMPTION

Used
60 kW
System
Purchased
over
Internet

Less Than \$30,000 Installed

Generated

Used

ECONOMICS OF SMALL WIND SYSTEM (CASE 1)

Key assumptions:

- Total cost of project is \$36,000
- Assumed life of investment = 25 years
- Power purchase agreement = 3.3 cents per kWh
- Before installing system, purchased 130,000 kWh of electricity at 8.8 cents/kWh
- Average power capacity factor = 20%
- Proportion of business potential not usable = 20%
- ► Financing 60% of the cost (15 year loan @6.5%)
- 25% cost share under Section 9006
- Annual costs include repairs (higher rate), utilities, property taxes and insurance, service contract
- Aggregate marginal tax bracket = 41%

(Small Wind System Economics Continued)

- Analyzed with the Small Wind Investment Model
 - Used after-tax discounted flows
- Results (Case 1):
 - Net Present Value = \$13,688
 - Number of years with negative after-tax cash flows = 4
 - First couple of years have negative operating losses
 - Before-tax internal rate of return = 49%

SMALL WIND PROJECT (CASE 2)

- Purchase of same system but generator rewound for only 30 kW to meet Michigan's net metering requirement
 - Same as Case 1 except:
 - Capacity is only 30 kW
 - Cost of system is \$4,000 more to cover rewiring cost
 - Slightly lower repair costs
 - Higher capacity factor of 22% (slight lower quality wind but smaller generator)
 - Only 5% of potential capacity not used by business
 - Net metering with \$0.105/kW for purchase and \$0.06 for net metering buy back

(Small Wind Case 2 Continued)

- Results (Case 2, Scenario 1):
 - Net Present Value = \$-1,437
 - Number of years with negative after-tax cash flows
 - = 7
 - First few years have negative operating losses
 - Before-tax internal rate of return = 6.0%
- Case 2, Scenario 2:
 - Same as Case 2, Scenario 2 expect net metering maximum is set at 60kw and 60kW turbine is used
 - -- Lower capacity factor of 17%
 - Results:
 - -- **Net Present Value = \$6,886**
 - -- Before Tax Return on Investment = 31%

CONCLUDING REMARKS

- Investments in value-added energy systems can involve large capital outlays
 - It is important to get the economics correct
 - Considers the time value of money
 - Takes into consideration the tax effects
- Because situations vary, it is important to evaluated each situation independently (use the computer models developed)
- These investments have a fair amount of risk and uncertainty involved
 - It is important to do extensive sensitivity analysis
 - Pay close attention to the key factors impacting the decision, particularly the net metering options